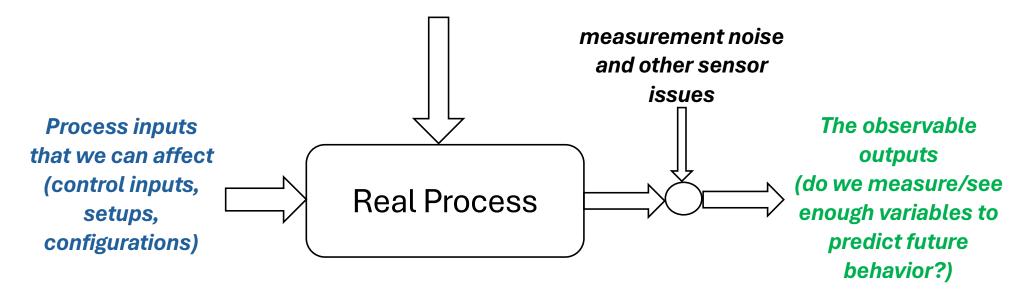

IPLNA - In-Parameter Linear Nonlinear neural Architectures Comparison to larger Neural Networks "Explainability", "Physics-Informed" Learning Weight Convergence,

Ivo Bukovsky (FSci, USB), Moritz Sontheimer (NTUST), Vladimir Maly (VM-Engineering)

Photovoltaic Power Prediction Model Comparison (Deep vs Shallow Neural Networks)



Nonstationarity, Perturbations, Incompleteness of Process Observations

process perturbations,
component wear and fatigue in time,
external environment changes,
untold changes

Ivo Bukovsky: Energy Days

Mini AI (?) IPLNA HONU

HONU ... Higher-Order Neural Unit is a standalone neuron, i.e, merely a polynomial of r-th order nonlinearity [7-9,14]

$$\mathbf{x}(k) = \begin{bmatrix} y(k) \\ y(k-1) \\ \vdots \\ y(k-n+1) \end{bmatrix} \xrightarrow{\mathbf{w}(k) \cdot g^r \left(\mathbf{x}(k) \right)} \text{neural output of HONU}$$

$$g^{r}(\mathbf{x}) = \begin{bmatrix} i = 0 \dots n \\ \{x_{i} \cdot x_{j} \cdot x_{\kappa} \cdots \}; j = i \dots n \\ \vdots \end{bmatrix} \qquad r = \begin{cases} 1 \dots \text{Linear Neural Unit (LNU)} \\ 2 \dots \text{Quadratic Neural Unit (QNU)} \\ 3 \dots \text{Cubic Neural Unit (CNU)} \\ \vdots \\ \text{LNU: } g^{r=1}(\mathbf{x}(k)) = \mathbf{x}(k) \end{cases}$$

$$LNU: g^{r=1}(\mathbf{x}(k)) = \mathbf{x}(k)$$

Some Considerations

- Larger NN (LSTM etc)
 - "have memory" so they can learn long data without changing all weights (parameters) of the model seasonally
 - But they are not analyzable (explainable, convergence/stability,...)
- Simpler (single "neuron" model, IPLNA, HONU)
 - All weights respond to current data (learn and forgets quickly temporal dependency in data, no memory for long data)
 - The data behavior is encoded into a vector of neural weights
 - We can use them if not enough data, if noisy data,...
 - We may explain system states according to learn weights
 - We can analyze/guarantee model convergence (learning stability) for any gradient learning
 - We can analyze stability of a real system from learned data
 - We can apply learning Entropy
 - IPLNA have one global minima (we solve set of linear equations); however, the input data must be linearly independent (no collinearity (redundancy) in x)

IPMAI

Interpretable Prescriptive Maintenance using Artificial Intelligence

Co-funded by the European Union

Jhočeská univerzita v Českých Budějovících University ef Sauth Behemia in České Budějovíce

