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Natural gas distribution network surveillance

• It is important to monitor how an energy 
distribution network works 
– both for routine checking, 

– and to discover patterns useful for future management and 
business decisions

• In addition to overall balances, it is useful to 
explore also lower level of distribution hierarchy
lower to medium level of aggregation 

• Here, we will examine possibilities for 
statistically based surveillance of natural gas 
distribution at the regulation station level



Regulation station

• A hub serving a closed local distributional 
network for natural gas

• The local network contains hundreds to 
thousands of individual end-customers of small 
to medium consumption totals 
mostly households + small- and medium-size commercial customersmostly households + small- and medium-size commercial customers

• Daily throughput recorded routinely

Variation: 

- normal
ambient temperature, seasonality, etc. 

- irregular
accidents, pressure decrease, thefts, unusual technological op.



Regulation station annual consumption

distribution of a sample of stations in the Czech Republic
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Consumption trajectory
(example of one regulation station)
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Temperature is the main driver
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GAM model, M1

with

• consumption on day t

• temperature on day t

• temperature difference, current-previous day

• unknown smooth functions s
T

,s
D

• via spline basis expansion
and penalization

• with heavy-tailed error distribution

to be able to cope with occasional outliers



Model identification – parameter estimation

• Penalized likelihood 
GAM as a penalized GLM
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• Coeficients – IRLS (iterative least squares)

• crossvalidation, 
generalized crossvalidation, REML
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Example of smooth component extraction
lag1 temperature effect
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Temperature difference effect
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How does this simple model fit real data?
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How is the model sensitive to outliers?
(few artificial zeros)

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

fit:

with 0s

without 0s

2015 2016 2017

0
1
0
0
0

2
0
0
0

3
0
0
0

time

fi
t



Practical task – scan for atypical days
e.g. Shewhart-like procedures on residuals

example of “OK” situation
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Example of 

a regulation station that is “not-OK”
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Another practical task: interpolate to replace 

consumptions for erroneously recorded days

• In the routine records, occasional zero 
consumption days occur

• By cross-checking against service logs, network 
operator can find which of the 0’s correspond to  
- real gas outage (correct zero)- real gas outage (correct zero)
- flow measurement failure (erroneous zero, EZ)

• Erroneous zeros spoil computations of annual 
sums and hence of various balances needed for 
both accounting and other purposes

• Interpolate the model to replace EZ’s     



Quality of the EZ replacement

• Simulation experiment

• Use a simplified model (without AR term)

• Randomly place r clusters of s zeros 

• Replicate 1000 times • Replicate 1000 times 

• Compute statistical summaries

• E.g. bias, RMSE, MAE etc.



1 to 30 clusters of two Ezs
(25, 50, 75-th percentiles of RMSE for the interpolated points )
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How does the model generalize to 

independent data?
(fit on 2015 and use on 2016)
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Characteristic Fit (2015) Use (2016)

Bias -6.9 7.1

RMSE 163.3 172.0

MAE 113.3 123.4



What about interaction between T and D?

• Because of the exponential form, 
M1 has temperature (T) and 
temperature-difference (D) terms that are:
- interactive on the original scale 
- but additive on the log scale- but additive on the log scale

• What about interaction even on the log scale?



Interactive GAM model, M2

with

• parsimonious interaction formulation
(obviously not the full interaction in the ANOVA model sense)

• via penalized tensor-product spline term

We can:

• test the presence of interaction formally

• compare prediction performance of M1,M2 on 
independent  data not used for fitting   
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A typical regulation station
Wald-like tests based on Wood (2013)

Term EDF Chi-square p-value

S
T

3.6 718.6 <0.0001

S
D

1.0 17.4 <0.0001

S
TD

6.3 49.2 <0.0001

Performance on independent data

Characteristic M1 M2

Bias 19.6 4.1

RMSE 172.0 173.1

Interactive model is not overwhelmingly better from 

practical perspective 

even though it is favored by formal tests  



Selection of atypical regulation stations

• The M1 model is useful both for atypical days
(compared to the consumption-to-temperature relation typical for a 
given regulation station)

• But it can be useful for picking regulation 
stations that show atypical consumption-to-stations that show atypical consumption-to-
temperature relationship 
(compared to the behavior of typical regulation station)



• If one thinks about a distribution of annual 
consumption into daily consumptions, 

• the fit of M1 model can be used to estimate
and compute:and compute:

- moments            ,                   9

- entropy                        , 

- etc.  



1st moment, 

distribution over 31 regulation stations, 

changes between years
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Time-varying coefficient model, TVAR

• Linear, but time-varying temperature model 
formulation is alternative 

• to the previous nonlinear temperature model 
with time-invariant structure

• The linear temperature coefficient trajectory is 
relatively easy 

- to interpret (local temperature sensitivity)

- and to compare among regulation stations 



TVAR as a GAM model

with coefficient trajectory 

modeled via penalized spline



Example of a typical coefficient trajectory
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Atypical behavior 9
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Alternative (state-space) formulation of a 

TVAR model

• Observation equation:

• State equations:

• With• With

• Initialization from overdispersed

obtained from OLS



Model identification and state estimation

• Model identification (estimation of the structural 
parameters) can be achieved very effectively via 
prediction error decomposition (Harvey, 2014) 
and Kalman filter

• Once the state parameters are fixed, the state • Once the state parameters are fixed, the state 
estimation (filtering, prediction) is achieved 
easily via Kalman filter

• The two steps together can be viewed as a 
particular example of the EM algorithm



Consumption trajectory
1-step ahead predictions
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Temperature coefficient (      ) trajectory
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Further look at the temperature dependence

• So far, we have used models (GAM, state-
space) with only one or two temperature lag 
(based on previous AIC selection)

• Is this all? Can we gain more insight by • Is this all? Can we gain more insight by 
considering more lags?

• Obviously, if we consider several temperature 
lags simultaneously, we face collinearity which 
complicates or even precludes direct approach



Almon lag approach

• Almon (1965) approach regularize 
a multi-lag model component, say                    

• by imposing a constraint on the lag coefficients
originally, it is lower order polynomial constraint

with         (choose K e.g. via AIC) with         (choose K e.g. via AIC) 

• the main advantage/beauty is that this is a linear 
transformation of parameters,

the linear for of the predictor is preserved
and so is the GAM model class



Almon polynomial (L=7, k=4) estimate of the 

time-invariant linear temperature filter 
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Form of the Almon-type restriction

• Previous estimate uses k with the best AIC

• Even that does not look entirely realistic
heavy weight on the zero lag does not correspond to the real 
temperature response behavior

in reality, there is a substantial difference between lag0 and lag1 
response, in favor of lag1

• Polynomial restriction is simply not flexible 
enough to describe the temperature correctly

• We can generalize a bit the approach and use a 
more general basis expansion restriction
B-spline (with penalized coefficients), in particular



Penalized B-spline restriction
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Pattern in many different regulation stations
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Morale

Shape of the time-invariant filter obtained from the
more flexible model suggests that:

• picture obtained from the polynomial restriction 
is distorted and shifted to higher lags 

In fact:

• lag0 contribution is small• lag0 contribution is small

• main driver is the lag1 (as expected) 

• the temperature response considers a contrast 
between lag1 and average of lag2, lag3
this is different from the 

traditional lag1 only or (lag1),(lag0-lag1) approaches 

favored by practitioners   



Deeper look: time-varying version of the 

generalized Almon model 

with penalized B-spline restriction 

• Distributed lag sub-model

• Coefficient restriction
B-splineB-spline

• Time-varying   -parameter
cubic spline or B-spline

• This is still linear in the   ‘s



One regulation station, 2015
trajectories run in days, here we show just month end days
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Conclusions, I

• Natural gas distribution monitoring at a low level 
of aggregation presents interesting practical and 
methodological challenges

• Several statistical approaches were presented • Several statistical approaches were presented 
for finding atypical days within one regulation 
station and atypical stations
nonlinear models (Shewhart-type procedures, moments, entropy)

time-varying coefficient models



Conclusions, II

• Main driver of the consumption is obviously the 
ambient temperature

• Temperature effects are non entirely trivial 
nonlinear, time-varying or both

• Temperature effect is not concentrated to one 
lag but invariably distributed over several lags
time-invariant/time-varying filter (linear on appropriate scale)
with sometime surprising consequences 

they can be studied e.g. in Almon-type models in considerable detail




