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Goals

Prediction of the next value

Estimation of the probability of exceedance over given threshold

for

Very short time series, i.e. 7 – 10 observations

Extremely short time series, i.e. 4 – 6 observations

and illustrate the idea on real data set
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Goals

Prediction of the next value

Estimation of the probability of exceedance over given threshold

for

Very short time series, i.e. 7 – 10 observations

Extremely short time series, i.e. 4 – 6 observations

and illustrate the idea on real data set

Basic ideas are

To use growth curves

To use prior idea about the character of data
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Data
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Data
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Models used

1 Additive allometric model

2 Multiplicative allometric model (time-power model)

3 Exponential model

4 Exponential model with additive error

5 Quadratic model

6 Autoregressive model

7 Gompertz’ model.
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Additive allometric model

Has (in general) the form

y = γ + αxβ + ε (1)

For γ = 0 and β = 2 we get quadratic model without absolute term,
i.e.

y = αx2 + ε
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Additive allometric model

Has (in general) the form

y = γ + αxβ + ε (1)

For γ = 0 and β = 2 we get quadratic model without absolute term,
i.e.

y = αx2 + ε

Griffits and Sandland, Biometrics (1984), discuss also allometric
models with more than two variables and provide references to the
literature of allometry.

Recall that this type of models has been studied for over 50 years
and, as a first approximation, it seems to fit a number of growth
processes quite well.
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Additive allometric model - cont.

In study of allometry, an attention is focused on differences in shape
associated with size or time.
Instead of relating two size measurements x and y (e.g. length of
bones) to time, we may be interested in relating them to each other.

Suppose that two relative growth rates are given by

1

x

dx

dt
= kx and

1

y

dy

dt
= ky

Defining β = ky/kx and cancelling out dt, we get

dy

y
= β

dx

x

Making the strong assumption that β is constant, we can integrate
the above equation to obtain

log y = log α+ β log x or y = αxβ



J. ANTOCH PREDICTION IN SHORT AND EXTREMELY SHORT TIME SERIES SEPTEMBER 20, 2018

Additive allometric model

Our personal experience is that it has a sense to consider separately both
three parametric model

y = γ + αxβ

and two parametric model

y = αxβ + ε (2)
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Multiplicative (time-power) allometric model

Has (in general) the form

y = αxβε. (3)

Using logarithmic transformation we get

log y = log α+ β log x + log ε (4)

respectively
log y = α⋆ + β log x + ε⋆ (5)

where α⋆ = logα and ε⋆ = log ε
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Exponential models

Exponential model has (in general) the form

y = eα+βx+ε (6)

Using logarithmic transformation we get linear model of the form

log y = α+ βx + ε (7)

Exponential model with additive error has the form

y = eα+βx + ε. (8)

Notice different placements of the error term, which implies different
interpretation of the error term.

This model can be complemented also by a shift parameter, where
needed.
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Quadratic model

Quadratic model has (in general) the form

y = a + bx + cx2 + ε. (9)

which can be also obtained as a special case of the additive
allometric model (8).
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Autoregressive model

yn+1 = ̺yn + εn, ̺ > 1. (10)

Parameter ̺ was in each step estimated using

̺̂n =
∑n

i=2
yiyi−1

/∑n

i=2
y2i−1.

In general, this model again describes exponential growth and for ̺ = 2
it corresponds to the model of splitting. Remarks:

Autoregressive model can be considered as a complement of the
exponential model because it shows the speed of splitting,
(partitioning, halving, division,. . . ).

For our data model (10) offered practically the same predictions as
exponential model (6).

In the literature is often suggested also Gompertz’ model. In the
initialization phase it practically coincides with the exponential
model.
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Assumption concerning errors

We assumed following cased

a Errors are independent

b Errors are dependent and form autoregressive sequence AR(1, ρ)
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Assumption concerning errors

We assumed following cased

a Errors are independent

b Errors are dependent and form autoregressive sequence AR(1, ρ)

c For construction of the prediction errors and/or estimation of the
probability of exceedance over given threshold we assumed
independence and normality of the errors

Remark: Comparison of the results when assuming independent errors,
respectively dependent errors, confirmed our expectation that dependence
does not play important role due to the short length of considered series.
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General modes of behavior

We assume two general types of the behavior of observed series:

a “Slow” (gradual), corresponding in medical applications to the local
relapse

b “Fast”, corresponding corresponding in medical applications to the
generalization of the disease

Decision between “slow” and “fast” type of the behavior depends on
past experience of the user and all available prior information about the
problem

GENERAL REMARKS

A For the case of “slow” (gradual) change additive allometric models
seems to be most suitable

B For the case of “fast” change exponential model seems to be more
suitable

C Generally, while prediction based on additive allometric model can
be considered conservative, prediction based on exponential model
rather liberal !
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General remarks

A For the case of “Slow” (gradual) change additive allometric models
seems to be most suitable

B For the case of “Fast” change exponential model seems to be more
suitable

C Generally, while prediction based on additive allometric model can
be considered conservative, prediction based on exponential model
rather liberal !

Representatives of both these models can be used for a prediction of the
next value. However, this does not mean NEITHER the true value NOR
next observation MUST be between these two predictions.

Moreover, one must always keep in mind that prediction more
than one step ahead can be both non precise and meaningless .
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Estimation of the exceedance probability

Aside prediction of the next value we were also interested in the
estimation of the given exceedance probability, say 0.2 in my example.
In the case of exponential model (6) we have

P
(
yn+1 > 0.2

)
≈ 1− Φ

( log 0.2− α̂− β̂ · (n + 1)

σ
√

1 + v2E

)
, (11)

where we set xi = 1, 2, . . . , n,, v2E = 2(2n + 1)/n(n − 1) and Φ(x)
denotes cdf of N(0,1).
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Estimation of the exceedance probability

Analogously for multiplicative allometric model (3) we get

P
(
yn+1 > 0.2

)
≈ 1− Φ

( log 0.2 − α̂⋆
− β̂ · log(n + 1)

σ
√

1 + v2MA

)
, (12)

where

v2MA =
n
∑n

i=1
(log i)2 − 2n log(n + 1)

∑n
i=1

log i + n2
(
log(n + 1)

)2

n2
∑n

i=1
(log i)2 − n(

∑n
i=1

log i)2
,

where we set xi = 1, 2, . . . , n,, Φ(x) denotes cdf of N(0,1) and α̂ and β̂
are estimates of the regression line fitted to the points
(log xi , log yi), i = 1, . . . , n. Analogously as above we can estimate σ
using historical data (experience).
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Recommendations

pacient age obs. model ŷn+1 p̂0.2 model ŷn+1 p̂0.2

289 74 19 aloA2 0.341 1.000 — — —
408 67 6 exp 0.248 0.790 aloA3 0.199 0.499
422 71 8 exp 0.536 1.000 aloA2 0.528 1.000
441 57 7 exp 0.315 0.961 aloA3 0.246 0.963
485 64 9 aloA3 0.062 0.000 — — —
496 62 7 exp 0.096 0.002 aloA3 0.072 0.000
522 63 7 exp 0.323 0.969 aloA2 0.237 0.894
533 57 3 ??? — — málo dat — —
545 72 8 aloA3 0.261 0.996 — — —
570 69 4 exp 0.632 1.000 —

Table 1. Models suitable for different patients.


