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Natural gas distribution network surveillance

* |tis important to monitor how an energy

distribution network works

— both for routine checking,

— and to discover patterns useful for future management and
business decisions

* |n addition to overall balances, it is useful to

explore also lower level of distribution hierarchy
lower to medium level of aggregation

* Here, we will examine possibilities for
statistically based surveillance of natural gas
distribution at the regulation station level



Regulation station

* A hub serving a closed local distributional
network for natural gas

 The local network contains hundreds to
thousands of individual end-customers of small

to medium consumption totals
mostly households + small- and medium-size commercial customers

« Daily throughput recorded routinely
Variation:

- normal
ambient temperature, seasonality, etc.

- irregular
accidents, pressure decrease, thefts, unusual technological op.



Regulation station annual consumption

distribution of a sample of stations in the Czech Republic
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Consumption trajectory

(example of one regulation station)
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Temperature is the main driver
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GAM model, M1

Y, = EIP(JGL'] + By.log(Y_y) + 5p(Tp_y) + 5p(T; — Tt—ljj' + &

with

¥; consumption on day ¢

I, temperature on day t

I._, temperature difference, current-previous day
unknown smooth functions st s

via spline basis expansion sw-) anw
and penalization @~ (0.5.7~) -

with heavy-tailed error distribution &:~t(0,57%,v)
to be able to cope with occasional outliers



Model identification — parameter estimation

* Penalized likelihood
GAM as a penalized GLM

Loglik(f,a) + Pen(/l) = Loglik(f,a) + ink.a'k.Vk_l.ak
k

» Coeficients — IRLS (iterative least squares)

« 2, crossvalidation,
generalized crossvalidation, REML



Example of smooth component extraction

lag1 temperature effect
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fitted

ow does this simple model fit real data?
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How is the model sensitive to outliers?

(few artificial zeros)




e.g. Shewhart-like procedures on residuals

Practical task — scan for atypical days

example of “OK” situation
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Example of
a regulation station that is “not-OK”

fit




Another practical task: interpolate to replace
consumptions for erroneously recorded days

* |n the routine records, occasional zero
consumption days occur

* By cross-checking against service logs, network
operator can find which of the 0’s correspond to
- real gas outage (correct zero)
- flow measurement failure (erroneous zero, EZ)

* Erroneous zeros spoil computations of annual
sums and hence of various balances needed for
both accounting and other purposes

* |Interpolate the model to replace EZ's



Quality of the EZ replacement

Simulation experiment

Use a simplified model (without AR term)
Randomly place r clusters of s zeros
Replicate 1000 times

Compute statistical summaries

E.g. bias, RMSE, MAE etc.



1 to 30 clusters of two Ezs
(25, 50, 75-th percentiles of RMSE for the interpolated points )

o
oo /
_ _
. R o
-
0—20 ~,—
o
O/O"’o/ \O/
[
O/
—
O/O/
O/
o
Ve
O/
— o
o —09—o0 —0 —
_— _o— _o—O0— ~. o —° T~o—0o—o 00— ~ °© —o—
o— %o ° o ~_ _-o0—0—o
8 ~,— —
o—
o
°—o
-,
—o0
-,
o‘o\o\
o _ o
L N
N \o\
o 0 —
—o— o .
o —
\o/ °—
o
o




fitted
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How does the model generalize to

independent data?
(fit on 2015 and use on 2016)
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Characteristic Fit (2015) Use (2016)
Bias -6.9 7.1

RMSE 163.3 172.0
MAE 113.3 123.4




What about interaction between T and D?

* Because of the exponential form,
M1 has temperature (T) and
temperature-difference (D) terms that are:
- interactive on the original scale
- but additive on the log scale

« \What about interaction even on the log scale?



Interactive GAM model, M2

Y, = EIP(IBD + P log(Ve_y) + 8p(Teoq) + 855 (T, — To—y) +5pp (T,1, Ty — Tt—lj) T &

with

« parsimonious interaction formulation
(obviously not the full interaction in the ANOVA model sense)

 via penalized tensor-product spline term

We can:
* test the presence of interaction formally

« compare prediction performance of M1,M2 on
independent data not used for fitting



dif1

-8

response

0 5 10

teplota1

20

25



A typical regulation station
Wald-like tests based on Wood (2013)

Term EDF Chi-square p-value
S 3.6 718.6 <0.0001
Sp 1.0 17.4 <0.0001
Sto 6.3 49.2 <0.0001

Performance on independent data

Characteristic M1 M2
Bias 19.6 4.1
RMSE 172.0 173.1

even though it is favored by formal tests

Interactive model is not overwhelmingly better from

practical perspective




Selection of atypical regulation stations

 The M1 model is useful both for atypical days

(compared to the consumption-to-temperature relation typical for a
given regulation station)

« But it can be useful for picking regulation
stations that show atypical consumption-to-

temperature relationship
(compared to the behavior of typical regulation station)



* |f one thinks about a distribution of annual
consumption into daily consumptions, ». - Zm},

 the fit of M1 model can be used to estimate FEL},
and compute:

- moments #. - Zmd MzZm (a - L)’

digﬁ

- entropy  &-- Zpd.mgg@d),
- etc. B



1st moment,
distribution over 31 regulation stations,
changes between years




Time-varying coefficient model, TVAR

Linear, but time-varying temperature model
formulation is alternative

to the previous nonlinear temperature model
with time-invariant structure

The linear temperature coefficient trajectory is
relatively easy

- to interpret (local temperature sensitivity)
- and to compare among regulation stations



TVAR as a GAM model

Y, = exp(fy + By.log(Ye_y) + Be.T_1) + &

with coefficient trajectory
modeled via penalized spline

K
Bo=5(0) = ) a.b(D
k=

1

N(D - P‘l)
i~ »
A



Example of a typical coefficient trajectory




Atypical behavior ...
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Alternative (state-space) formulation of a
TVAR model

Observation equation: v.=u,.+8.7., +«

State equations: .= +raen

Rl L T s

By =Py + 0.

With e.~n(0.62)
v, ~N{0, UE]

B.~N(0, ’5;

Hip
Initialization from overdispersed (;)
obtained from OLS



Model identification and state estimation

* Model identification (estimation of the structural
parameters) can be achieved very effectively via
prediction error decomposition (Harvey, 2014)
and Kalman filter

* Once the state parameters are fixed, the state
estimation (filtering, prediction) is achieved
easily via Kalman filter

* The two steps together can be viewed as a
particular example of the EM algorithm
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Further look at the temperature dependence

« So far, we have used models (GAM, state-
space) with only one or two temperature lag
(based on previous AIC selection)

* |s this all? Can we gain more insight by
considering more lags?

* Obviously, if we consider several temperature
lags simultaneously, we face collinearity which
complicates or even precludes direct approach



Almon lag approach

* Almon (1965) approach regularize |,
a multi-lag model component, say Z‘”“

* by imposing a constraint on the lag coefficients
orlgmally, it is lower order polynomlal constraint
6 = Z + with k<L (choose K e.g. via AIC)

« the main advantage/beauty is that this is a linear
transformation of parameters,x.s-xw.a =%«

the linear for of the predictor is preserved
and so is the GAM model class



Almon polynomial (L=7, k=4) estimate of the
time-invariant linear temperature filter




Form of the Almon-type restriction

Previous estimate uses k with the best AIC

Even that does not look entirely realistic

heavy weight on the zero lag does not correspond to the real
temperature response behavior

in reality, there is a substantial difference between lag0 and lag1
response, in favor of lag1

Polynomial restriction is simply not flexible
enough to describe the temperature correctly

We can generalize a bit the approach and use a
more general basis expansion restrictions = > «..s.0
B-spline (with penalized coefficients), in particular -



Penalized B-spline restriction




Pattern in many different regulation stations
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Morale

Shape of the time-invariant filter obtained from the
more flexible model suggests that:

* picture obtained from the polynomial restriction
is distorted and shifted to higher lags

In fact:
 lag0 contribution is small
* main driver is the lag1 (as expected)

* the temperature response considers a contrast

between lag1 and average of lag2, lag3

this is different from the
traditional lag1 only or (lag1),(lag0-lag1) approaches
favored by practitioners



Deeper look: time-varying version of the
generalized Almon model
with penalized B-spline restriction

Distributed lag sub-model ) 5.7,

Coefficient restriction &=, @ 5®
B-spline i

Time-varying a-parameter «.- 2. ».5.¢
cubic spline or B-spline

This is still linear in the ¥'s



One regulation station, 2015

trajectories run in days, here we show just month end days

2015




Conclusions, |

« Natural gas distribution monitoring at a low level
of aggregation presents interesting practical and
methodological challenges

« Several statistical approaches were presented
for finding atypical days within one regulation

station and atypical stations
nonlinear models (Shewhart-type procedures, moments, entropy)
time-varying coefficient models



Conclusions, Il

* Main driver of the consumption is obviously the
ambient temperature

« Temperature effects are non entirely trivial
nonlinear, time-varying or both

« Temperature effect is not concentrated to one

lag but invariably distributed over several lags

time-invariant/time-varying filter (linear on appropriate scale)
with sometime surprising consequences

they can be studied e.g. in Almon-type models in considerable detalil






