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Change Point Detection%%%

/ tries to identify times when the probability distribution of a stochastic process ™

or time series changes. In general the problem concerns both detecting whether or not
\, s
. a Change has occurred, or whether several changes might have occurred, and

identifying the times of any such changes.

= Novelty Detection
%task of recognising that test data differ in somN
| respect from the data that are available during trainin |

g.
———— M.A.F. Pimentel, D.A. Clifton, L. Clifton, L. Tarassenko, Institute of
— N Biomedical Engineering, Department of Engineering

~ Anomaly Detection NS Science, University of Oxford, 2013 e
a\ o |

/ the problem of finding patterns in dat |
" that do not conform to expected behavior. |

V. Chandola, A. Banerjee, V. Kumar, University of/
N Minnesota, 2009

S _

. Concept Drift Detection

Concept drift is an important problem in the context
of machine learning and data mining. It can be described as
a change in the fundamental concepts underlying the data, or, in its
most basic form, as a significant change in the distribution of the data.

A. Dries, Dept. of Computer Science, Katholieke Universiteit Leuven, U.
Ruckert, International Computer Science Institute, Berkeley,
2009



Classical ,,Change-point problem®:

we investigate a random process X(?), ¢ = 0 with the following assumptions:

there exists an unknown time 7' >0 such that:

for 0 =t =T the process X(?), is stationary, driven by some
(usualy known) probability measure P?,

for T'=t the process X(?), is driven by some different
probability measure P!.

A plenty of work has been done in this research field and it is impossible to give
an exhaustive overview. The Zentralblatt MATH returns almost 3000 hits, when

entering the word ”change-point”

Page, E. (1954). Continuous inspection schemes. Biometrika 41, 100-115.
Shiryaev, A. (1978). Optimal Stopping Rules. Springer, New York.
Bhattacharya, P. (1994). Some aspects of change-point analysis. In Change-point Problems
(eds. E. Carlstein, H. Mu'ller & D. Siegmund), 28-56, Institute of Mathematical Statistics, Hayward.
Zacks, S. (1982). Classical and Bayesian approaches to the change-point problem: Fixed sample and
sequential orocedures. Stat. Anal. Donnees 7.48-81.



The d-dimensional random process X(¢), ¢ = 0 is h-stationary, if there exists a

d-dimensional real function h(7) and a d-dimensional centered weak stationary
random process &(f) such that  X(¢) = h(¢) + &), t = 0.

Consider the following situation:

NOVe[ty D
there exists an unknown time 7' >0 such that: etection
for 0 =¢=T the process X(?), is h-stationary with some
(known or unknown) function A(#) and a stationary
random process §(f),
for 7'=1t the process X(¢), is g-stationary with some different

(usualy unknown) function g(¢) and some random
process y(f).

h(?) is known => ¥(f)=X(#) - h(f) allows use of classical methods

h(?) is unknown => X(¥) is non-stationary, we can’t use classical methods



To detect the change, we need some learning method to know h(%).

Applied incrementally learning system:

The predictor y(f + 6) = f{x(),w(¢)) is a a function f(X,w) such that
for any time f = 0 and a given horizon ¢ minimizes the error

| X(z + 9) —Ax(0), W(D))].
As a predictor we use neural network based on HONU (High Order Neural Units)
LNU: y() = x(H)w(?) (linear)
QNU: y(6) = xT(OHW()X(?) (quadratic)

Ww(f) is n-dimensional vector of weights (adaptive parameters): .
£2  static gradient
_H 36( ) descent

W(t"*"l) — W(t) + AW(t)a where AW(t) — 2 8W algorithm

LNU: Aw(t) = pe(t)x(t)
QNU: AW (t) = pe(t)x(t)x(t)"



{X(®), t =z 0} is h-stationary => {Aw(?)} tends to stationary process

{X(), t = T} is no more h-stationary => {Aw(f)} loses its stationarity

=> the change can be detected by classical detection methods
applied to the process {Aw(?)}

For illustration, we use data generated by the process

X(t) = asin®t +bcos®t + ccos®t +dsint +e + &

with parametersa =2, b=-1,c=3,d=-1,e=0
for t = 0 and random fluctuations & - N(0, 1/3).

The change is simulated in the time 7 = 2000 from which longer is
a=0,d=0and e=-0.7.
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Shanon-based Entropies are data-window and probabilistic based
computations that are widely used for time series analyses.

- Sample Entropy is a signal complexity evaluation algorithm (floating
window based quantification of signal complexity, probability-based
approach).

« Entropy Learning is a Shannon-inspired neural network learning algorithm
based on minimizing complexity (entropy) of neural weights in a network.

« Learning Entropy is a non-Shannon based novelty detection algorithm
based on observation of unusual learning effort of incrementally learning
systems. LE is a relative measure of novelty (information) recognized as
unusual learning effort of pre-trained learning system on individual data

samples.



XM(I) = {x(I-M), ..., x(I-1), x())} => {wW(-M), ..., w(l-1), w(l)}

Aw(k) =w(k+1) - W(k) = {AW(I-M), ... ,Aw(l-1)}
|Aw(l) Z |Aw (] — 1)

na nw

- > 2 Lawwisaam@m)

gj=111=1 Learning Entropy

Ea(k) =

where A = (aq,. ..,y , )is na-dimensional vector of detection
senzitivities.

» We use Aw(z) for detection rather than prediction error due to its higher
sensitivity.



Onset Detection od Epileptic Seizures in EEG Time Series
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Ivo Bukovsky, Matous Cejnek, Jan Vrba, Noriyasu Homma, 2016 Int. Joint Conf. on Neural Networks



XM= {x(I-M), ..., x(I-1), x([)} => {w(-M), ..., w(l-1), w(])}
Aw(k) = w(k+1) - W(k) = {AW(I-M), ... ,Aw(l-1)}
|Aw(l) Z |Aw (] — 1)

Qa(k) ={veR": (v- IAW(k)I)TE_ (v —|Aw(k)) < wg '}

Hotelling’s t-square test:

1) In the Phase I: Observe {x(/-M), ..., x(l-1), x({)} and compute
{w(l-M), ... ,w(l-1), w(l)}, evaluate the centroid |Aw(/)| and

sample correlation matrix X

2) For k=1[+1, ... evaluate the predictor y(k) = f (x(k-1), w(k-1))
and compute the Hotelling’s t2-statistics
= (|Aw(l)| = Aw (k)" ST AW(D)] - Aw(k))
n(M —1)

3) 2
t
M —n

2
~ Tn,M—l — Fn,M—n



XM= {x(I-M), ..., x(I-1), x([)} => {w(-M), ..., w(l-1), w(])}
Aw(k) = w(k+1) - W(k) = {AW(I-M), ... ,Aw(l-1)}
|Aw(l) Z |Aw (] — 1)

Qo(k) ={veR": (v- IAW(’C)DTE (v = [Aw(k)]) < wg b

Aw;
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XM= {x(I-M), ..., x(I-1), x([)} => {w(-M), ..., w(l-1), w(])}
Aw(k) = w(k+1) - W(k) = {AW(I-M), ... ,Aw(l-1)}
|Aw(l) Z |Aw (] — 1)

Qo(k) ={veR": (v- IAW(k)|)TE (v = [Aw(k)]) < wg b

Aw;
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XM= {x(I-M), ..., x(I-1), x([)} => {w(-M), ..., w(l-1), w(])}
Aw(k) = w(k+1) - W(k) = {AW(I-M), ... ,Aw(l-1)}
|Aw(l) Z |Aw (] — 1)

Qo(k) ={veR": (v- IAW(/@)DTE (v = [Aw(k)]) < wg b




XM= {x(I-M), ..., x(I-1), x([)} => {w(-M), ..., w(l-1), w(])}
Aw(k) = w(k+1) - W(k) = {AW(I-M), ... ,Aw(l-1)}
|Aw(l) Z |Aw (] — 1)

Qa(k) ={veR": (v- IAW(k)|)TE (v = [Aw(k)]) < wg b

Algorithm:

1) Find Qq(/), i.e., evaluate the centroid |[Aw(/)| and sample
correlation matrix X on X(/)

2) For k=1[+1,... evaluate the predictor y(k) = f (x(k-1), w(k-1))
3) If |Aw(k)| & Qu(/), detect a change.
4) Update Qq(/) for [ = k.

5) Continue in step 2).
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Summary:

« The novelty detection algorithm for nonstationary process
based on observation of unusual learning effort (Learning
Entropy) of incrementally learning systems is proposed.

« As a predictor we use neural network based on HONU.

» We use Aw(?) for detection rather than prediction error due to
higher sensitivity.

e The novelty is detected using classical methods (e.g. the
Hotelling t2) for change detection applied to the process

AW()} .

« Using sliding window, we adapt the confidence d-dimensional
elipsoid Qq(?)

o If the vector of weight increments Aw(z+1) corresponding to
next observation of monitored process doesn’t belong to Qq(?),
a signal is emitted.



Thanks for your attention



