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Multi-Scale Uncertainty Analysis for Data Driven Models of...

Motivation
● The oxyfuel combustion in a bubbling fluidized bed combustor is relatively new technology, and the 

combustion process is a complex nonstationary MIMO  process:
– about 33 input variables (incl. temperatures), and 
– at least 5 output variables 
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We wish to developed reliable data-driven 
dynamical model of the oxyfuel combustion 
process, and proper (or mutliple validated) 
feature selection method is crucial esp. in 
case of system nonlinearity.



  

Multi-Scale Uncertainty Analysis for Data Driven Models of...

Motivation
● The oxyfuel combustion in a bubbling fluidized bed combustor is relatively new 

technology, and the combustion process is a complex  MIMO  process:

– about 33 input variables (incl. temperatures), and 

– at least 5 output variables 

● The accurate physical dynamical model of the process is unreachable and the process 
parameters (such as of the input fuel, etc) are not exactly known.

● We are researching the use of data-driven approaches (such as regression models, 
neural networks, Bayesian models, etc) to model the process with  prospects of its 
optimization and control.

● Optimization techniques to achieve robust auto-regressive models are still a challenge.

● At first here, we are focusing on data analysis for the feature vector  of discrete-
time  dynamical computational models. 3



  

Motivation
● A MIMO model can be implemented as multiple MISO models (multiple-input single output)  yj=fj(xj) , where 

fj(.) denotes a computational model (regression model, neural network, Bayesian model) in general.

● It is easy to train a neural network to exactly fit the model for training data; however, this does not assure a 
correct model function for new input data (due to process nonlinearity, nonstatonarity, and variability in time 
<=> too many degrees of freedom)

● We need our computational model be causally correct, and it can hardly be achieved without  a proper 
input data

● So the question is: What is the proper configuration of input vector x ? (i.e. What inputs and what  
feedbacks in x ? How long their history (how many step delays)?….) 
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Presentation Outline
● We will briefly discuss some fundamentals of methods for feature selection for data driven dynamical 

models (such as regression models, neural networks, Bayesian approaches,…) for complex multiple-
input multiple-output (MIMO) systems

– linear cross-correlations,

– Principal Component Analysis (PCA),

– neural network based auto-encoders,

– Mutual Information (probability/likelihood) based techniques

● and then

the presentation Objective

we discuss possible research direction of our original method [a] for
new research of feature selection via multi-scale false neighborhood minimization 

(for optimizing the configuration of data driven discrete-time dynamical computational models)
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[a] BUKOVSKY, I., Witold KINSNER, V. MALY a K. KREHLIK. Multiscale Analysis of False Neighbors for state 
space reconstruction of complicated systems. In 2011 IEEE Workshop On: Merging Fields of Computational 
Intelligence and Sensor Technology (CompSens) . 2011,p. 65–72.  doi:10.1109/MFCIST.2011.5949517



  

Linear Cross-Correlation for MIMO Systems
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● The cross correlation is for bi-variate linear dependency (SISO input-output), i.e., it evaluates the 
strength of linear relationship between two scalar variables. 

● For MIMO systems it serves to reveal co-linearity among input variables. 
● Assuming real processes are not so heavily nonlinear, the linear cross-correlation may be a first-to-do 

technique to: 
● indicate correlations of some input and output variables (if it can be linearly captured)
● obtain some notion about time-shift (lag) between input and output variables

● However, for nonlinear MIMO systems, we can hardly use linear cross-correlation for more advanced 
model design



  

Principal Component Analysis (PCA) for (dynamical) Data Driven Models
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● PCA is a classical linear 
transformation method that:
● is based on linear cross-

correlations, so
● it reduces input data 

dimensionality via linear 
compression
 i.e.                   (right fig.)

while preserving the desired 
amount of information in data

● We applied PCA to dimensionality 
reduction for MIMO dynamical 

PCA

[b] BUKOVSKÝ, Ivo a Michal KOLOVRATNÍK. A Neural Network Model for Predicting NOx at the Mělník 1. Acta 
Polytechnica [online]. 2012, 52(3) [vid. 2015-01-26]. ISSN 1805-2363.  doi:10.14311/1538

model of coal powder combustion process [b], where we decreased model complexity and suppressed 
outliers; however, the accuracy of the auto-regressive prediction was still limited (esp. for emissions of 
CO, CO

2
)

● Furthermore, PCA as a dimensionality reduction technique is not suitable for direct feature selection 
(input x configuration, sensor selection), so additional techniques together with PCA has to be used.



  

Neural Network based Auto-Encoders for Data Driven Dynamical Models
● Auto-encoders (AE) are nonlinear mappings  that encode 

(compress) and then decode (decompress) input data, so they 
perform nonlinear dimensionality reduction via some 
customized optimization algorithm.

● AE has been widely studied and applied in Deep Learning that 
excels esp. in image and speech recognition nowadays.

● The application of Deep Learning in complicated tasks such as 
medical imaging or prediction of complex nonstationary 
dynamical  MIMO systems is still an actual challenge.

● Because of customizable structure, the AE can combine linear 
and nonlinear dimensionality reduction. 

● Extending studies of using AE for feature extraction for 
dynamical systems has been appearing in literature just since 
recently.
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● The performance of AE can be excellent; however, it depends on:
● their custom design, 
● selected (optimization) algorithms and its setups,
● quality and amount of training data.



  

Mutual Information (probability/likelihood) Techniques for Data Driven Models
● Mutual Information (MI, Shannon 1948) is a probabilistic measure that quantifies the strength of 

nonlinear relationships.

● Furthermore, MI can quantify the
strength of nonlinear relationship not only
between two scalar variables, but also between
two vectors; thus,

● MI concept is more suitable for nonlinear feature
selection, i.e. for configuration of input vector x via
optimizing a suitable criterion Q that utilizes maximizing the strength of nonlinear relationship between x 
and y , i.e.

● More recent achievements on information theoretic nonlinear feature selection via MI and 
recommendations on particular criteria selection and on suitability for small data set can be found in [c].   
            

9
[c] Brown, G., Pocock, A., Zhao, M.J. and Luján, M. "Conditional Likelihood Maximisation: A Unifying Framework 
for Information Theoretic Feature Selection." Journal of Machine Learning Research 13 (2012): 27--66.  



  

Here, finally the our method and its extension…
Multi-Scale Uncertainty Analysis for Data Driven Models...
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● By the Uncertainty (in the design of input vector x for a given training data), we mean the existence 
of False Neighbors , i.e. if for two distinct times k

i
 , k

j
:

● Nowadays, there exists published methods on feature selection via false neighborhood concept; 
however, usually with scalar thresholds Rx and Ry... 

● We consider the user-defined fixed scalar thresholds Rx and Ry be still a challenge for further 
improvement of feature selection methods

● In [a] based on cumulative-sum approximation of power-law measure for multi-fractals, we have 
proposed to evaluate false neighbors in data over the whole range of setups of thresholds (to cope 
with the issue of a priory unknown optimal values of the thresholds  Rx and Ry).

● Next slide recalls the core of this multi-scale method, and then the current research extension is 
presented



  

Multi-Scale False Neighborhood Analysis for Data Driven Models...
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● The method is based on cumulative-count approximation of power-law measure for multi-fractals ,

● so instead of detecting and counting  False Neighbors (FN) for constant thresholds Rx and Ry, 

● we detect and count FN for the range of thresholds Rx={Rx
1
,Rx

2
,Rx

3
,…} , Ry={Ry

1
,Ry

2
,Ry

3
,…} via

Areal Cumulative FN count  or Diagonal Cumulative FN count as:

        where FN(.) is the count of false neighbors in the all dataset for given thresholds.

  please see [a] for more details on False Neighbor Matrix and on power-law cumulative sum approximation.

● In the very principle, the above cumulative measures helps to avoid the risk of inappropriate threshold 
selection if  FN shall be found via merely single valued thresholds Rx and Ry.

● The next slide shows (and discuss) ideas of our new research as we wish to developed fully automated 
multi-scale method for feature selection to achieve more reliable data driven model of the oxyfuel 
combustion process.



  

Multi-Scale False Neighborhood Analysis for Data Driven Models…
Current Research Extension
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● We are developing a method that will design (or will be a 
supportive method for) the automated input vector 
configuration (feature selection) for complex data-driven 
dynamical MIMO model of (oxyfuel combustion) via the multi-
scale false neighborhood concept ,i.e. via minimizing false 
neighbors in model configuration and its training data

● Currently several directions are investigated:

1) Being inspired by other feature optimization concepts, 
e.g. via the informatic theoretic feature selection [c] and 
optimization techniques therein, we may apply some 
optimization technique to a binary feature selection 
vector θ (right top), so we can search for minimum 
configuration of x with minimum number of multiscale 
false neighbors.

2) The sampling period of a model can be optimized via minimizing the multi-scale false neighbors

3) Other optimization techniques to find a minimal input vector x with minimal multi-scale false 
     neighbor measures … (?)



  

Summary
● We briefly reviewed some principles and discussed their potentials for feature selection for data-

driven MIMO dynamical systems, i.e.:

– Linear cross-corelations as the most fundamental method for getting first notion about 
possible relationships between data; however, that is rigorously unsuitable for design of 
nonlinear MIMO systems

– PCA that reduces dimensionality of a feature vector; however, that is limited by its linearity 
and needs other extensions to perform feature extraction

– Auto-encoders that perform powerful nonlinear dimensionality reduction; however, their use 
for nonlinear data-driven dynamical models, i.e. long term auto-regressive predictors is still 
not much explored

– Information theoretic nonlinear feature selection, i.e. based on Mutual Information 
(probability/likelihood), as rather a well explored concept and popular domain

● Then, we recalled our original method on multiscale false neighbors analysis that is robust 
against the inappropriate threshold selection for false neighborhood, and

● we indicated its potentials for development of a new type of computationally effective automated 
feature selection method to support the design of complex data-driven dynamical systems.



  

● We hope, you could find something interesting in our 
presentation, 

● we hope, we might initiate discussion and get your very valuable 
feedback (now or later)

● we hope, you are enjoying the Workshop and your stay in Prague

Thank you very much for your attention!!!
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