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Industrial motivation
Short-term electricity demand forecast

I Time series analysis : sarima(x), Kalman filter [Dordonnat et al. (2009)]

I Machine learning [Devaine et al. (2010)]

I Similarity search based methods [Poggi (1994), Antoniadis et al. (2006)]

I Regression : edf modelisation scheme [Bruhns et al. (2005)], gam [Pierrot
and Goude (2011)], Bayesian approach [Launay, Philippe and Lamarche (2012)]

New challenges in electricity demand forecast
I Market liberalization : may produce variations on clients’ perimeter

that risk to induce nonstationarities on the signal
I Development of smart grids and smart meters : various aggregates

are simultaneously of interest.

Needs to build models relying more deeply to the multiscale
nature of the data, both in time and space



Short bibliography about bottom-up forecasting
I Bottom-up forecasting predicts the total consumption of a set of customers

using individual metered data.
I Combines clustering methods to build clusters of customers, forecasting models

in each cluster and then aggregating them.
I Clustering can be quite independent of the forecasting model (Irish dataset)

[Alzate, Sinn, Proc. of the Int. Conf. on Data Mining, 2013.]
I On the same dataset, a longitudinal clustering and a functional forecasting

model similar to our KWF for forecasting individual load curves in
[Chaouch, M., IEEE Trans. Smart Grid 2014.]

I A clustering method supervised by a forecasting accuracy, applied to a French
industrial subset obtaining a substantial gain but computationally intensive, in
[Misiti, Misiti, Oppenheim, Poggi, Rev. Stat. J. 2010, 8, 105–124.]

I A k-means based on electrical features and, in each cluster, deep learning is used
for forecasting. A minimum gain of 11% in forecast accuracy on the Irish data
set and smart meter data from New-York
[Quilumba, Lee, Huang, Wang, Szabados, IEEE Trans. Smart Grid 2015]

I Ensemble of forecasts from a hierarchical clustering on individual average weekly
profiles, coupled with a deep learning model for forecasting in each cluster, and
at the end combined using linear regression
[Wang, Chen, Hong, Kang, IEEE Trans. Smart Grid 2018.]

1. Antoniadis, Brossat, Cugliari, Poggi, J. Soc. Française Stat. 2012, 153, 52–78.



Clients hierarchical structure and prediction

Figure : Hierarchical structure of N individual
clients among K groups.
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I Zt : aggregate demand at t

Zt,k : demand of group k at moment t
I Groups can express tariffs, geographical dispersion, client class ...
I Profiling vs Prediction
I We follow Misiti et al. (2010) to construct clusters of customers to

better predict the global aggregate



Functional data as slices of a continuous process
I Observe a square integrable continuous-time stochastic process

X = (X (t), t ∈ R) over the interval [0,T ], T > 0 ;
I We want to predict X all over the segment [T ,T + δ], δ > 0
I Divide the interval into n subintervals of equal size δ.
I Consider the functional-valued discrete time stochastic process

Z = (Zk , k ∈ N), where N = {1, 2, . . .}, defined by

Xt

t
1δ 2δ 3δ 4δ 5δ 6δ0 T + δ

Z1(t) Z2(t) Z5(t)

Z3(t) Z4(t) Z6(t)

Zk(t) = X (t + (k − 1)δ)

k ∈ N ∀t ∈ [0, δ)

I If X exhibits a δ−seasonal component, Z is particularly fruitful,
transferring complexity to intraday features



Wavelets to cope with Functional Data

I domain-transform technique
for hierarchical decomposing
finite energy signals

I description in terms of a
broad trend (approximation
part), plus a set of localized
changes (details parts).

Discrete Wavelet Transform (DWT)
If z ∈ L2([0, 1]) we can write it as

z(t) =
2j0−1∑
k=0

cj0,kφj0,k(t) +
∞∑
j=j0

2j−1∑
k=0

dj,kψj,k(t)

where cj,k =< g , φj,k >, dj,k =< g , ϕj,k > are the scale coefficients and
wavelet coefficients respectively, and the functions φ et ϕ are associated
to a orthogonal mra of L2([0, 1])



Energy decomposition through DWT

I Energy conservation of the signal

‖z‖2H ≈ ‖z̃J‖22 = c20,0 +
J−1∑
j=0

2j−1∑
k=0

d2
j,k = c20,0 +

J−1∑
j=0
‖dj‖22.

I For each j = 0, 1, . . . , J − 1, we compute the absolute and relative
contribution representations by

contj = ||dj||2︸ ︷︷ ︸
AC

and relj =
||dj||2∑
j ||dj||2︸ ︷︷ ︸

RC

.



A first clustering procedure

0. Data preprocessing. Approximate sample paths of z1(t), . . . , zn(t)

1. Feature extraction. Compute either of the energetic components using
absolute contribution (AC) or relative contribution (RC).

2. Feature selection. Screen irrelevant variables. [Steinley & Brusco (’06)]

3. Determine the number of clusters. Detecting significant jumps [Sugar &

James (’03)]

4. Clustering. Obtain the K clusters using PAM algorithm.



A fully time-scale function-based dissimilarity

I Distance based on wavelet-correlation
between two time series

I Wavelet coherence provides a
generalization of local Fourier
cross-spectrum

I Can be used to measure relationship
between two functions

I The strength of the relation is
hierarchically decomposed across scales
without losing of time location

I A major drawback is that it needs
more computation time and storage
(complex values)



Wavelet coherence (1/2)

Continuous Wavelet Transform (CWT)
Starting with a mother wavelet ψ consider ψa,τ = a−1/2ψ

( t−τ
a
)
.

The CWT of a function z ∈ L2(R) is,

Wz(a, τ) =

∫ ∞
−∞

z(t)ψ∗a,τ (t)dt

As for Fourier transform, a spectral approach is possible.

Sz(a, τ) = |Wz(a, τ)|2 (wavelet spectrum)
Wz,x (a, τ) = Wz(a, τ)W ∗x (a, τ) (cross-wavelet transform )



Wavelet coherence (2/2)

R2
z,x (a, τ) =

|W̃x ,y (a, τ)|2

|W̃x ,x (a, τ)||W̃y ,y (a, τ)|
,

Based on the extended R2 coefficient, we can construct a coefficient of
determination between two wavelet spectra

WER2
z,x =

∫∞
0

(∫∞
−∞ |W̃z,x (a, τ)|dτ

)2
da∫∞

0

(∫∞
−∞ |W̃z,z(a, τ)|dτ

∫∞
−∞ |W̃x ,x (a, τ)|dτ

)
da
.

And obtain a dissimilarity 1 based on it

d(z , x) =

√
JN(1− ŴER

2
z,x )

1. A. Antoniadis, X. Brossat, J. Cugliari, and J.-M. Poggi. Clustering functional
data using wavelets. International Journal of Wavelets, Multiresolution and Information
Processing, 11 :1, 2013.



A 2-stages strategy (Energycon)

1. J. Cugliari, Y. Goude and J. M. Poggi, "Disaggregated electricity forecasting
using wavelet-based clustering of individual consumers," 2016 IEEE International Energy
Conference (ENERGYCON), Leuven, 2016, pp. 1-6.



Nonparametric prediction of functional time series
I Let (Zk , k ∈ Z ) be a stationary sequence of H-valued r.v. Given

Z1, . . . ,Zn we want to predict the future value of Zn+1.
I A predictor of Zn+1 using Z1,Z2, . . . ,Zn is

Z̃n+1 = E[Zn+1|Zn,Zn−1, . . . ,Z1].

Autoregressive Hilbertian process of order 1
I The arh(1) centred process states that at each k,

Zk = ρ(Zk−1) + εk

where ρ is a compact linear operator and {εk} an H−valued strong
white noise. Under mild conditions, this equation has a unique
solution which is a strictly stationary process with innovation
{εk}k∈Z . [Bosq, (1991)]

I When Z is a zero-mean arh(1) process, the best predictor of Zn+1
given {Z1, . . . ,Zn−1} is :

Z̃n+1 = ρ(Zn).



KWF (Kernel Wavelet Functional) in action

kernel Estimating directly the prediction equation using the kernel method,
the nonparametric estimation is reduced to the direct generalization
of the scalar case

key the choice of an appropriate distance between current and past
situations

idea 1 Similar past causes produce similar future consequences.
idea 2 Similar shapes form one class.



Prediction of Saturday 10 September 2005
We use Antoniadis et al., (2006) prediction method with corrections to
cope with non stationarity Antoniadis et al., (2012, 14).

I The example is the global French electricity load consumption over
10 years

I Use the last observed segment (n = 9/Sept/2005) to look for similar
segments in past.

I Construct a similarity index SimilIndex (using a kernel).
I Prediction can be written as

L̂oadn+1(t) =
n−1∑
m=1

SimilIndexm,n × Loadm+1(t)

I First difference correction of the approximation part.
I Use of groups to anticipate calendar transitions.

I R implementation available in enercast package
github.com/cugliari/enercast

github.com/cugliari/enercast


SimilIndex date SimilIndex

2004-09-10 0.455
2003-09-05 0.141
2002-09-06 0.083
2004-09-03 0.070
2003-09-19 0.068
2000-09-08 0.058
2000-09-15 0.019
1999-09-10 0.017

past future



Corrections to handle nonstationarity

On mean level
base Ŝn+1(t) =

∑n−1
m=1 wm,nSm+1(t)

diff Ŝn+1(t) = Sn(t) +
∑n−1

m=2 wm,n∆(Sm)(t)

On groups by simple post-processing
Define new weights and renormalize.

w̃m,n =

{
wn,m if gr(m) = gr(n)
0 otherwise

gr(n) is the group
of the n-th segment.

Figure : Daily prediction error (in mapex100).



As a result of the disaggregation for forecasting
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Figure : 25K professional EDF clients, sampled at 30min during 5 semesters



How to make it scalable ? the IRSDI project in a nutshell

Context
I Past work in 2014 : clustering with wavelets (RC, WER), KWF,

Energycon’16
I Industrial : Electricity demand forecasting & smart grids

infrastructure
I Academic : curve’s shape & nonparametric function-valued forecast

Aims
I evaluate the upscaling capacity of the Energycon strategy
I if possible, keep the computing centralized

This research benefited from the support of the FMJH ’Program Gaspard Monge for
optimization and operations research and their interactions with data science’, and
from the support from EDF and Thales



Data description

Available
I EDF : 25K professional

clients, sampled at 30min
during 5 semesters

Simulated
I using simple simulation

scheme we produce datasets
of sizes 250K, 2.5M and
25M



Strategies for upscaling

I From 25K to 25M : in 1000 chunks of 25K
I Reference values :

I K ′ = 200 super consumers (SC)
I K∗ = 15 final clusters

1st strategy
I Do 1000 times ONLY Energycon’s 1st-step strategy on 25K clients
I With the 1000× K ′ SC perform a 2-step run leading to K∗ clusters

2nd strategy
I Do 1000 times Energycon’s 2-step strategy on 25K clients leading to

1000× K∗ intermediate clusters
I Treat the intermediate clusters as individual curves and perform a

single 2-step run to get K∗ final clusters



Remark 1 : Mixture models for disaggregated forecasting
I Goal : to theoretically support such a strategy
I Model based clustering using mixture model of functional regressions

(Devijver et al. 2016) to build clusters of customers together with
the models within each cluster. The model of the kth cluster is

Y = βkX + εk

where εk is a centered Gaussian noise of covariance matrix Σk .
I Let πk be the proportions of each cluster, and ξ = (π,β,Σ) the

vector containing all the parameters to estimate. Then, the
conditional density is (ϕ the Gaussian density)

sKξ (y |x) =
K∑

k=1
πkϕ(βkx ,Σk)

I Tools : Multivariate and functional extensions of existing results
about sparse estimation of such mixture models + slope heuristic
penalized log-likelihood − 1

n
∑n

i=1 log(sKξ (yi |xi)) + κDK

1. E. Devijver, Y. Goude and J. M. Poggi (2016) "Clustering Electricity Consumers
using High Dimensional Regression Mixture Models" Preprint, 23 pages, arxiv.org/
abs/1507.00167

arxiv.org/abs/1507.00167
arxiv.org/abs/1507.00167


Remark 2 : Random Forests and Sequential Aggregation
for Disaggregated Demand Forecasting

I Goal : to disaggregate in space the global signal to improve forecasts
I Goal 2 : to use a flexible nonparametric forecasting method allowing

easily to take into account exogenous variables
I Goal 3 : to generate many models from clusters and combine them
I Method : Random Forests as a forecasting method together with

unsupervised clusters and intensive use of sequential aggregation of
experts related to the clusters (Goehry et al. 2017, 2018)

I Some partial conclusion on Irish data
I based on exogenous individual variables, disaggregation leads to a

real gain but not more than random
I Random forests provide useful predictors for all aggregation scales
I the decisive additional gains are obtained thanks to the combination

of cluster’s predictors

1. B. Goehry, Y. Goude, P. Massart and J. M. Poggi (2018) , "Forêts aléatoires
pour la prévision à plusieurs échelles de consommations électriques" Proc. Journées de
Statistique JDS 2018, 28 mai-1 juin, Paris-Saclay, France, talk 112 toltex.u-ga.fr/
users/RCqls/Workshop/jds2018/resumesLongs/subm112.pdf

toltex.u-ga.fr/users/RCqls/Workshop/jds2018/resumesLongs/subm112.pdf
toltex.u-ga.fr/users/RCqls/Workshop/jds2018/resumesLongs/subm112.pdf


More information

I Article freely available (including references and self-references
herein)
Auder, Cugliari, Goude, Poggi (2018)
Scalable Clustering of Individual Electrical Curves for Profiling and
Bottom-Up Forecasting

in vol. 11(7), 1893
https://doi.org/10.3390/en11071893

I R package available from
github.com/cugliari/iecclust

I Recall that KWF is available from the enercast R package at
github.com/cugliari/enercast

https://doi.org/10.3390/en11071893
github.com/cugliari/iecclust
github.com/cugliari/enercast

