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Energy-distribution/production-related data 

as a challenge

• The real-time data from energy industry are 

invariably complex and large
- complex underlying processes

- complicated hierarchical (longitudinal) structure

- measurement errors are often not negligible

- measurements might reflect the desired quantity only indirectly

(only nontrivial functionals of the underlying process observable)

- when pooling data from several sources, inconsistencies arise 

• Substantial challenge for the analytical methods 
- simple statistical and data-analytic methods might easily yield   

confusing and even misleading results  



Tools to meet the challenge: 

modern statistical methods

• Modern statistical modeling tools offer a solution
- several classes of models usable in energy-industry context, here  

we will concentrate on the semi-parametric regression methods –

- GLM, GAM and extensions (GAMLSS) 

with smooth (especially penalized spline) components

• Need flexible and structured approach
- to cover non-standard situations

- to have modular structure (implementation, checks, serviceability)

- at least partially interpretable components (for model realism and  

qualitative control of its output) vs. black-box approach

- fruitful hybrid of empirical (purely statistical) and theoretical models



Dynamic approach

• Many practical tasks in energy-distribution 
networks are related to prediction
- predictions, their uncertainty (or full predictive distribution) are  

needed for decision-making

- e.g. as formalized, economically motivated loss function 

optimization

• Markov-chain-based statistical models can 
provide framework for practical forecasting
- parsimonious, hence efficient for parameter estimation and  

prediction

- relatively easy implementation

- can utilize endogeneous and exogeneous inputs

- can provide uncertainty assessment in a rather unified way  



Will illustrate the approach at examples of 

several energy applications

• Photovoltaic production
- empirical+theoretical models fusion for prediction, 

calibration of the NWPs

• Natural gas consumption modeling
- consumption trends from the space-time viewpoint

- SLP profile development for official use

- Bayesian calibration of the SLP using total customer pool info

• Wind energy
- prediction of the wind-farm output

• Detailed analyses from Energy-meteorology
- cloud dynamics from high-frequency data

- clouds in motion, spatio-temporal field prediction



A typical semi-parametric statistical 

framework useful for modeling and 

prediction

GAM (Generalized Additive Model)

Now available in many various SW, notably in R.
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_ A simple model for wind dynamics, is it 

worthwhile to bother with GAM?

• Toy example: British hourly windspeed data from 

more than 2 years of one measurement location 

• AR

- AR(1) selected

• GAMAR
- nonlinear AR, estimated nonparametrically
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AR1 and GAMAR1
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What is the reason for the success of the 

nonlinear model?
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The story is very similar when we model and 

predict a windfarm output for short horizons

• Krystofovy Hamry windpark 
- about 97 GWh electricity produced in 2009, about 21 turbines

• A bit larger nonlinear autoregressive model was 

selected by AIC for the farm energy output 

model: 

• Similar sigmoidal shape of the smooth functions 

• RMSE for 1h prediction
- is 243.9 (vs. 302 for GAMAR1)
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Once we have a well identified model …

It can be used: 

• to analyze the structure of the problem 
- test hypotheses about parameters and functional parameters

• as a basis of forecasting procedure 
- upon SW implementation of model estimated on the training data

- possibly subject to periodic updates

• for simulations 
- aiming at assessment of (otherwise difficult) tasks of substantial

practical interest



Example

• How much it matters if we have windfarm data of 

lower quality?
- undocumented switch-off

- maintenance or security relate

- in plain language: one column (with the switch-off indicator) is 

missing in the database

• Certainly, it makes the prediction results worse 
- if the model is trained without taking the indicator into account

• But is it worthwhile to pay more money for 

improving them?



Prediction performance

net effect of practical value to be compared 

to the price of better data
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_ Business intelligence extracted from data 

• details of spatio-temporal trends in natural gas 

consumption needed to guide planning

• 2007-2013 RWE individual household customer 

annual consumption data (corrected for 

temperature and calendar effects via 

normalization by the official SLPs) in kWh

• It is known that the overall consumption trend is 

decreasing, the interest lies in whether slope of 

the linear trend is spatially homogeneous 



Marginal consumption distribution 
(averaged over space)
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Linearity?
(empirical quantiles computed year by year)
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• Typically, for standard spatial analyses of 

continuous data (like the linear trends), geo-

statistical methods like kriging (with estimated 

covariogram or variogram) are used

• Here, we will illustrate that the GAM with 2-dim 

spline basis can be used to model the data in a 

very efficient and easy-to-grasp manner
from                             specification of                     component

supplies the spatial variance-covariance component in a way 

somewhat similar to the geostatistical modeling (via variogram 

estimation), but it allows for (smooth) nonstationarities (advantage!)

Complicated (spatial, autocorrelated) data
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Map of the mean consumption 
(mean over 2007-2013 computed individually 

and then modeled by GAM)



Robustness? 
(10% trimming)



Map of the slope of 2007-2013 linear trend



Other, more in-depth views possible
(individual median of negative inter-annual 

change, smoothed spatially)



_ Typical scheme for NWP use 

in PV power forecasting

• NWP model output used as input for stat. model
(whose outputs are eventually used as the PV power predictions)

• Main NWP variable used for PV is the GHI
other met variables can be used as well (temperature, pressure, …)

• Statistical modeling can be seen as a calibration 

of the NWP outputs  
typically, it needs to be nonlinear and/or time-varying

• Sun/panel geometry and possibly other info can 

be used as well
e.g. power production history
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• The ultimate goal is to look at the quality of the 
PV power forecast

• Nevertheless, it is useful to look first at the 
quality of the NWP prediction of the solar 
irradiation itself  

Motivation:

• check one component of the prediction system

• kind of “upper bound” on the power prediction 
model performance quality
other problems make the prediction task more complicated: 

details of panel PV production (efficiency - temperature, dust, snow)

tilted panel complexities (geometry, direct/diffuse light)



Spatial locations of the 15 CHMI 

official measurement sites



Look at:

• Different NWP models 
MM5 v 3.6, 3.7 and WRF v 2.2, 3.4

predictions for D0 horizons

• Different “post-processing of NWP”: 

- raw NWP
assessment of how good NWP is per se

- two versions of simple calibration:
assessment of how corrigible NWP is   

- linear regression,  

- quantile (L1) regression 



Performance of different NWP models  
(one site: Hradec Kralove)
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Consequences for PV power 

modeling and prediction

• NWP as a predictor of the main PV power output is far 
from being perfect

• It is quite noisy 
dealing with an errors-in-variables-problem

NWP-related problem is specific, more complicated version of EVP 

• Complicated statistical properties induced by L/U bounds
bias, heteroscedasticity, time-varying skewness …

• Different NWP models behave differently,
both in terms of random variability 

and systematic errors

 

tttt

ttt

Bxx

xfY








~



Negative bias, raw (non-calibrated) NWP, D0 
effect of spatial pre-smoothing
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Negative bias, quantile regression calibrated NWP
effect of spatial pre-smoothing

lin
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RMSE, quantile regression calibrated NWP

effect of spatial pre-smoothing
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MM_37, negative bias, raw NWP



MM_37, RMSE, linearly calibrated NWP



Focus of the practically meaningful 

predictions quality assessments

• So far, we looked at traditional measures like 

RMSE, MAE, bias

• This is typical, but does it capture everything? 
it is very common among practitioners (and also in solar-energy-

related journals) to base model selection on such overall 

performance measures 

• Perhaps, one should treat the “gross errors” 

differently?



FP rate
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A take-home message

• Non-negligible part of the NWP model behavior 
is in fact a noise
Pre-smoothing is advisable. 

It needs some care and effort. In particular, it should not be done 
just along the output time trajectories.

• The errors show several systematic features
systematic biases

• Systematic deficiencies should be corrected by a  
“calibration” – via statistical model, based on 
long-term data behavior



From GHI to power

• Power predictions are more complicated than the GHI 
predictions
this is despite the fact that theoretically the PV output is more or less linear 
in the (true) incoming light intensity

• Additional tilted panel irradiation computations
- true panel irradiation is not easy to get

- geometry, solar and panel angles

- diffuse and direct irradiation components behave differently but 
typically, only GHI is available from NWP (climatologically-based 
decompositions are typically used)

• Additional level of complexity added by the process of 
PV conversion 
efficiency depends on environmental variables (dust, snow, temperature,…)

day-to-day operational issues etc.



Effect of spatial averaging and NWP model, RMSE
QR output, D0, across farms
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Additional smoothing

• We saw that spatial pre-smoothing of the NWP 

output tends to be beneficial 

• What about other, more focused smoothing of 

the NWP output
GAM models with P-splines and roughness penalties

smoothing mean power response w.r.t. the NWP as a covariate

penalty with coefficient determined via crossvalidation 
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Effect of smoothing single NWP input 
s(MM5_37)
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Smoothing two NWPs (MM5_37, WR_22) 
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Effect of NWP calibration
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_ COST WIRE prediction competition

• COST ES 1002, WIRE 
Weather Intelligence for Renewable Energies

• Solar farm, Catania, Italy 2010-2011 
total nominal power 2.1 kW

• Teams from 19 countries
employing various prediction techniques

• Scenario: “train” (estimate) on 2010 and use 

(evaluate) on 2011 data



Raw NWP is far from being perfect …
RAMS, D0 horizon
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Bias has a nontrivial temporal structure …
RAMS, D0 horizon
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Model for power prediction

• Gaussian GAM 
with both linear and spline components motivated physically

• Using two NWP model outputs as inputs for the 

statistical prediciton model
WRF, RAMS

• Light components enter model separately
direct, diffuse

• Penalized difference between the NWP’s

• Interaction between NWP, cos of zenith angle



Model 
with Bayesian and shrinkage motivation
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RMSE, MAE
out-sample
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_ Spatio-temporal prediction of cloud 

coverage obtained from a satellite

• Satellite data are used to improve short-term 

forecasts of cloudiness and hence of 

photovoltaic production, their use becomes 

widespread and almost routine

• GISAT project
- regular grid over Europe and more

- domain lat 30.02 to 64.98, lon -9.97 to 29.98 

- squares of 150 arcsec, corresponding roughly to 4.6x4.6km square

- data available each 15 min

- prediction to the next hour (and more)



Model, I

• Uses past “optical flow” estimated by satellite 

experts from comparison of consecutive images 
(from immediate past before making the prediction)

• Markov spatio-temporal model 
working with kernel operating on close spatial neighborhood of a 

predicted point

• Kernel is deformed 
according to the optical flow vector (size and angle)

• Model is trained on 15min transition and then 

propagated in the Markovian style





Model, II

• Spatial position i,j and time t

• Optical flow O

 

 

 
1,,

,

,,,,,

,

1,,,

1,,,,0

.,.

.
1

log

~













 


















tvjui

Svu

vjuianglevjuisizevu

Blk

tljkilk

tjijisize

ijt

ijt

ijtijt

YOOsY

YOs

BernoulliY












Model, III
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Examples of how one can 

• “read” the model components 

• and check them against physically motivated 

ideas about the structure of influence



Coefficient of the same pixed in the past, 

depending on the flow vector size 



Coefficient of the pixel SW from predicted 

location, dependence on magnitude and 

angle of the flow vector



Summaries

Total 

misclassific

ation

FP 
(for cloudiness)

FN 
(for cloudiness)

persistence 0.10362 0.08498 0.13303

Markov 

model

0.09112 0.07368 0.11863



Model predictions



Different horizons
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_ Statistical model for 

Standardized Load Profiles (SLP)

Experience from two SLP official projects
- Czech Republic and Slovakia

- in CR, the SLP model is now a part of gas-regulation legislative

The SLP model has several expert-motivated

interpretable/checkable components
- stratification upon customer type segments

- multiplicative components

- effect for previous (long-term) consumption (offset-type)

- correction for calendar effects (weekday type, Christmas, Easter)

- correction for long-term trends (insulation, change of heating …)

- temperature effects on two time scales (immediate and weeklong)



Stratification

• Model is built separately for various 
segments of customer pool (stratification)

• HOU and SMC 

• Using info about natural gas appliances and 

broad consumption level brackets

• E.g. HOU1 – cooking, HOU4 – space heating



Data for SLP modeling

• Sample of hourly measured customers

- of cca 1000

- empirical data suffer from occasional 

measurement and other errors

• Individual data 

- historical consumption 

- consumer segment type

• Exogeneous explanatory variables

- temperature

- calendar and other time effects

• Aggregated (routine) data for checking 



GAM model

• Normal, with log link, offset and smooth (spline) 

components

• Important interaction between short-term 

temperature effect and day type

• Stratified on customer segment (HOU, SMC)
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Example of a short-term temperature effect 
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Fit on the continuously measured data
HOU4
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HOU1
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Out-of-sample performance, GasNet
large HOU+SMC pool of customers (more than 1 mil.)

(followed/read-off routinely – i.e. approx annually)
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_ Aggregation

• In the energy context, it is common to meet 
various forms of aggregation-disaggregation-
reaggregation problem

• Motivated by many practical needs 
- e.g. network balancing for technical and financial purposes

• Data are obtained/modeled at one aggregation 
level and needed at another
- both finer and coarser might be needed

- aggregation over time, space, individual customers etc. 



Situation

• A nonlinear time series model:

(with a given function          and transformation      )

• Observed repeatedly for many 

(independent) individuals,

• yields (relatively standard) longitudinal data 
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A complication

• Individual observations      

are not accessible, however 

• Individual sums over time 

(individual interval sums over       ),                                  

are available, instead
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Irregular data

• Lengths and positions of the intervals are 

available are generally different for different 

individuals. 

• This yields a more complicated data structure

• Different number of observations per individual, 

in different timing      
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Data as interval sums for 

individual collection of intervals
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Formal problem, I 

• In fact, we are dealing with “integrated” 

(or aggregated) observations 

(integration is done over time for each individual separately)

• But meaningful inference is needed for different 

levels of aggregation than that available in data. 

This concerns both:

- regularity (and interpretability of results)

- different requirements for time-resolution 



Formal problem, II

• This is similar to estimating derivatives of a 
curve when “integral observations” are available 
(e.g. in growth curves, where inference for growth velocities are 

based on total length measurements)

• But more complicated

(observations of process functionals are used to estimate 

other functionals)

• Similar to MAUP 

(Modifiable Aerial Unit Problem) of Spatial Statistics, Cressie (1996)



For various purposes, 

utility company needs:

• individual estimates of daily consumption 

(finest, daily, or t-resolution)

• estimates of double sums both across time and  

customers, like 

(in practice, this is generally even more important)

(regular accounting, price changes, planning transportation capacity, 

redistributing discrepancies between amount of gas ordered and 

consumed during a given period, etc.)
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Desired data aggregation



State-space model in fine time-resolution

with                                                        

and a given     (yearly periodic,           )

• Independence across i and t

• Initial conditions, 

• Structural parameters
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TS view

For a given individual i, this is a:

• seasonal (    and    ), 

• non-stationary (    through    ), 

• nonlinear (        transformation of state) 

state-space model
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Mixed model view

Individual (perhaps not too long, but quite 

numerous) time series are bound together:

• Individual scaling factors (   ) are not completely 

free, but tied by the assumed common 

distribution (                )

(they come from a common population of individuals)

• Nonlinear mixed effects (NLME) type model.

(producing desirable shrinkage for    estimation, among other things)
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Estimates from the model

(when structural parameters     are known)

• Online estimates of de-noised data version are 
readily obtained by application of 

Extended Kalman Filter (EKF) 

• Approximate 
– (one-day ahead) predictor

– Filter 

• Based on local linearization

• Occasional missings do not cause problems

(just skipping update in EKF)
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Estimation of

• Structural parameters                              are 

unknown and have to be estimated from data 
(this amounts to “filter training” and identification of the distribution 

for individual multipliers     )

• ML estimation is employed

• (Approximate) likelihood evaluation is 

rather easy, and efficient.

(based on prediction error decomposition)
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_ Energy Meteorology

• Assessment of photovoltaic potential uses as 

much information as possible

• Relative sunshine duration (or its complement, 

cloud shade, CS) is an important local feature to 

consider

• But, by far, it is not measured everywhere

• One possibility how to get closer measurements 

is to use (calibrated) point cloudiness, PC

• That is measured routinely at many professional 

meteorological stations



PC calibration to estimate CS

• Certainly, one can estimate CS (conditional) 

mean, given the PC – this is a regression task 

and it can be achieved rather easily by spline 

regression

• If one is interested in the conditional distribution 

(not just in the mean), the task is more difficult

• The conditional distribution might be needed e.g. 

for optimization of economically-based loss 

functions (in the risk asessment)

• Can use GAMLSS extension of the GAM to get 

the practical solution …



BEINF (beta inflated) model

• i.e.

• where
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Estimated CS (conditional) mean



Conditional quantiles



More complicated features …
(all obtained consistently from the same model)
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Morale

• Statistical modeling offers a unified and flexible 
methodology to cover many difficult practical 
tasks arising in energy industry

• The model has to come to the data and 
underlying problem and not vice versa

• The model should arise in close cooperation of 
statistician(s) and energy experts

• Purely empirical and purely “mathematical” 
modeling approaches can be united based on 
broader umbrella to the benefit of an end-user  


