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m Functional linear regression model
linking observations of a functional
response variable with measurements
of an explanatory functional variable
is considered.

m Our aim is to analyze effect of
a functional variable on a functional
response by means of functional linear
regression models when slope function
is estimated with tensor product
splines.

m Model is applied to real data
comprising electricity consumption of
Sardinia 2000 —2005.

m Computational issues are addressed.
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Data

Model serves to analyze real data set concerning electricity consumption
of Sardinia.

Data set consists of 52 584 values of electricity consumption collected
every hour within January 1, 2000 — December 31, 2005.
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Data
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Official data — Sardinia

Energia richiesta

Energia richiesta in Sardegna GWh 12.611,6

A\ Deficit (-) Superi (+) della produzione rispetto alla richiesta GWh +419,9
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Deficit Superi = = = Energia elettrica prodotta === Energia elettrica richiesta

Consumi: complessivi 12.036,7 GWh; per abitante 7.286 kWh
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Official data — Italy

Energia richiesta

Energia richiesta in Italia GWh 330.443,0
A\ Deficit (-) Superi (+) della produzione rispetto alla richiesta GWh -49.154,5
% 14,9
A 1973 =-879 A\ 2005 =-49.154,5
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Deficit Superi = = = Energia elettrica prodotta == Energia elettrica richiesta

Consumi: complessivi 309.816,8 GWh; per abitante 5.286 kWh



J. ANTOCH et al. FUNCTIONAL LINEAR REGRESSION ... ELECTRICITY CONSUMPTION SEPTEMBER 10th, 2015

Basic trends
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Basic trends
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Consumptions for one day

COMPLETE DATA
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Mean consumption for individual days

MEAN HOURLY CONSUMPTIONS FOR DIFFERENT DAYS
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Mean consumption for individual months

MEANS FOR DIFFERENT MONTHS
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Mean consumption: Individual months over years
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Main tasks

m Main interest is predicting oncoming weekend and/or weekdays
consumption curve if present weekdays consumption is known and
functional predictor is curve of present weekdays consumption.
Model

Yi(t) = a(t) +/ Xi(s)B(s,t)ds +¢€i(t), teh, i=1,...,n
h
Data
m Functional predictors X;'s represent weekdays curves
m Y;'s represent a weekend curves
or a weekday curve in which case Y; = Xj 1
m Recall that model corresponds to ARH(1)

m Complete data series has been cut into 307 weeks Weekdays (Mo to
Fri) and weekends (Sa to Su) separated (reason, leading to two sets
of discretized electricity consumption curves, is fundamental
difference between weekdays and weekend consumption).
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Assumptions

m Data are observations of identically distributed random functional
variables {X,-(s), Yi(t),s € h,t e /2}, i=1,...,n, defined on same
probability space and taking values in some functional spaces.

m We consider separable real Hilbert spaces L%(/;) and L?(h) of square
integrable functions defined on compact intervals /; C R and

I C R, equipped with standard inner products.

m We focus on functional linear relation

Yi(t) = at) + / Xi(s)B(s,t)ds +¢€i(t), teh, i=1,...,n

Ji

m aft) € L?(h) and (s, t) € L?(h x k) are unknown functional
parameters

m c1(t),...,en(t) are i.i.d. centered random variables € L?(})

m ;(t) and Xi(s) are uncorrelated



J. ANTOCH et al. FUNCTIONAL LINEAR REGRESSION ... ELECTRICITY CONSUMPTION SEPTEMBER 10th, 2015

Assumptions (cont.)

m For generic interval / set [?(/) is equipped with usual inner product
(0, 0) = [, o(t)(t)dt, ¢,9 € L2(1) and associated norm
loll = (o, &)M2.

m We often omit arguments of functional variables and parameters and
write Xj, Yj, ¢; and 3 instead of Xj(s), Yj(t), ¢i(t) and 3(s, t)

m Recall the model

Yi(t) = a(t) + / Xi(s)B(s,t)ds+¢ei(t) teh, i=1,....,n (1)

X;i's represent a weekdays curves

Y;'s represent a weekend curves,

or a weekday curve, in which case Y; = Xj11

a(t) and B(s, t) are unknown functional parameters
Model (1) corresponds to an ARH(1)
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Estimating 3

Let B = (Bj1, .- Bjg, )/ i = 1,2 denote normalized B-splines basis of
spllne space S, (/) of degree g; defined on interval /; with k; — 1
equidistant interior knots and d; = k; + q; being d|men5|on of Sqki (1)

“Exact” estimator B of 3 is bivariate spline

d
Zzek,Blk Bz/ ) 1/(5)(982(1')7 seh, teb. (2)

k=1 /=1
where
®© = argmin ZHY (Xi—X), B{®By) H + 0Pen(m, ©), (3)
@ERled?

with penalty parameter o > 0 and penalty term
2

Pen(m, ©) = Z ml(m — ) //// [85"7187?'” e B{(s)®Bx(t)| dsdt
2 1

m;=0
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Estimating O
Using Kronecker product notation, we can write
. ~ -1
vec© = [Cg + QP('")] vec D, (4)

where

m—1

_ (0) ~ (m) (m) _ (m—m1)’ (m1)
Co=P"'c (C+oP(™), P Zo<m1>P % P

mi=

with

. S~ 1
= (du) € RN X R®:, dy = - Z(Xi, Bi)(Yi, Bar),

~ N 1<
C = (Ckk/) S ]Rdl X ]Rdl, Ckk! = ; ;<X,', Blk><XiBlk/>,

P(ml) (ka') e RY x RY, p{(k/

(B BE). j=1.2
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Approximative solution

m Alternatively one can approximate exact solution by a simpler matrix
version @ if Pen(m, ©) in minimization task (3) is replaced by

2
Pen(m, ©) = / / { "””es“’)} ERCESR] }dsdt.
L Jh

Matrix of unknown parameters ® can be estimated as:

~ ~ —1 ~ -1~
©=-[C+oP(™|  POCPMPO 1 C, (5)
with = )
C= [64— .QP{m)} 5P2(0) .
m Approximative matrix estimator 3(s, t) of (functional parameter)
B(s. t) is N _
B(s, t) = Bi(s)O@By(t)
m Numerical calculations were performed using an algorithm discussed
by Benner in Parallel Algorithms Appl. 17, 2002.
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Estimating intercept

Intercept parameter o can be estimated either by
a(t)= V() [ Bls,OX(s)ds, Ve b, (6)
h
or approximated by d(t) if 3 is used instead of 3 in (6).
oA A A AR F A KKK KA AAAAAAAK KKK FAK KKK

Recall the model

Yi(t) = a(t) +/I Xi(s)B(s,t)ds+¢ei(t) teh, i=1,...,n
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Choice of parameters
Numerical calculation of B and & requires proper choice of several
parameters:
Order g; of splines
Order of derivatives m
Numbers of knots k;

A Penalization parameter p
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Choice of parameters

Numerical calculation of 8 and & requires proper choice of several
parameters:

Order g; of splines
A Order of derivatives m
Numbers of knots k;

A Penalization parameter p

m Order of splines g; and derivatives m do not play important role
compared to k; and p
= choice q; = 3,4 and m = 2 appeared appropriate

m Concerning number of knots k; and penalization parameter p

= Reasonable strategy is to fix it large (to prevent oversmoothing)
while controlling degree of smoothness of 3 with p.

General suggestion does not exists = tuning is necessary
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Choice of parameters (cont.)

In practical and simulation experiments we used:
m15< k<30

m p using leave-one-out cross-validation criterion
n N 2
o)) =3 [ vt [ G oxeas| a @
i=1 7k Jh

ﬁ;(s, t) is obtained from data with i-th pair (X;, Y;) omitted
m Alternative — computationally faster — estimate p is obtained
replacing in (7) exact solution [3; with approximative solution [3;

Remark: According our experience approximative criterion provides in
many cases estimate very close to the one obtained by minimizing (7)



J. ANTOCH et al. FUNCTIONAL LINEAR REGRESSION ... ELECTRICITY CONSUMPTION SEPTEMBER 10th, 2015

Elimination of trend and seasonality

To eliminate (and estimate) trend(s), we used one-sided kernel smoother.
Let Z1,...,Zy be discrete observations of underlying time-continuous
process with Z; = Z(t;). We estimated trend by

~ ~ J .
v = o(t) = Zk:jilﬁlwk(ﬁh)zk (8)
with Epanechnikov kernel
1 (k—j)*/h°

A k)
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Elimination of trend and seasonality

To eliminate (and estimate) trend(s), we used one-sided kernel smoother.
Let Z1,...,Zy be discrete observations of underlying time-continuous
process with Z; = Z(t;). We estimated trend by

J

o= oy) =3, @l h)Ze (8)
with Epanechnikov kernel
. 1— (k—j)?/h?
i) = kI ©)

J N2 /2
I:j—h+1<1 —(k—Jj)?/h )
Why?
We essentially focus on functional data modelling
Kernel smoother is a well-known and intuitive nonparametric tool

Its performance can easily be controlled by smoothing parameter h

Remark: LOESS gives approximately the same results.
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Data detrending

Total electricity consumption
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Detailed prediction

Nonparametric trend estimator can be extended to cover whole required
time interval, e.g. (T; T + 48] for the weekend prediction, on a
sufficiently fine time-grid.

m Let t1,...,t, denote time moments of interest. Then we:
m Start with 2T+t1.
m Add estimated Zl to the observed data
m Evaluate 2—,—+t2 profiting from the knowledge of Zl.
m Recursively repeat trend estimation.
Generally
Zryy =Y(4 | T)+ (5] T)
with -1
GIT) = Y ST+t MZc+ Y Ore (T +t:h) 1

ke[T+tj—h; T] k=1

Weights w are based on pooled sample Z1,..., 77, Z744,,... LTty
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Example of prediction
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Example of prediction
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Example of prediction
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Prediction of detrended data (» details)
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Prediction of electricity data (» details)
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Conclusions

m Approximating matrix solution is competitive with the exact
estimator and, as concerns data fitting, behaves satisfactorily.

m If one primarily focuses on the functional parameter estimation, the
exact solution should be preferred as it is more stable as concerns
tuning parameters of the method.

m Matrix approach can still be used throughout the cross-validation
procedure at least as the pivot parameter, whose neighborhood is
then seek throughout by the exact method.

® In many situations a very small number of knots is sufficient to
obtain good estimators. As the matrix method behaves well and is
fast, it is worth performing estimation for several knot setups —
eventually a kind of cross-validation can be used for the knots as
well.

m Interesting is also the case of errors-in-variables due to, e.g., not
exact predictor registering, for which a presmoothing of the curves
or functional total least squares might be involved.
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THANKS
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Residuals of detrended data
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Residuals for predicted electricity data
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